Synthesis of biomimetic segmented polyurethanes as antifouling biomaterials.
نویسندگان
چکیده
Controlling the non-specific adsorption of proteins, cells and bacteria onto biomaterial surfaces is of crucial importance for the development of medical devices with specific levels of performance. Among the strategies pursued to control the interactions between material surfaces and biological tissues, the immobilization of non-fouling polymers on biomaterial surfaces as well as the synthesis of the so-called biomimetic polymers are considered promising approaches to elicit specific cellular responses. In this study, in order to obtain materials able to prevent infectious and thrombotic complications related to the use of blood-contacting medical devices, heparin-mimetic segmented polyurethanes were synthesized and fully characterized. Specifically, sulfate or sulfamate groups, known to be responsible for the biological activity of heparin, were introduced into the side chain of a carboxylated polyurethane. Due to the introduction of these groups, the obtained polymers possessed a higher hard/soft phase segregation (lower glass transition temperatures) and a greater hydrophilicity than the pristine polymer. In addition, the synthesized polymers were able to significantly delay the activated partial thromboplastin time, this increased hemocompatibility being related both to polymer hydrophilicity and to the presence of the -SO3H groups. This last feature was also responsible for the ability of these biomimetic polymers to prevent the adhesion of a strain of Staphylococcus epidermidis.
منابع مشابه
A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes
Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These su...
متن کاملPreparation and Evaluation of Blood Compatibility of Novel Epoxy-Modified Polyurethanes
In order to prepare polyurethane elastomers with acceptable physical properties and good biocompatibility, novel polyurethane networks were synthesized via curing reaction of epoxy-terminated polyurethane prepolymers (EUPs) with hexamethylene diamine. EUPs were prepared from reaction of glycidol with NCO-terminated polyurethanes (ITPs). ITPs were also synthesized from reaction of one equi...
متن کاملSynthesis of new polyurethanes based on 5, 6, 7, 8 – tetrabromo – 2, 3 – dihydro – 1, 4 – phthalazine dione
In this work, 5,6,7,8-Tetrabromo-2,3-dihydro-2,3-bis(2-hydroxyethyl)phthalazine-1,4-dione is synthesized by the reaction of 5,6,7,8-tetrabromo-2,3-dihydrophthalazine-1,4-dione with 2-bromoethanol in the presence of triethylamine. The obtained monomer was polymerized with different diisocyanates, including hexamethylenediisocyanate (HMDI), tolylene-2,4-diisocyanate (TDI), isophoronediisocyanate ...
متن کاملBiomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold.
Inspired by the typically adhesive behaviors of fish skin and Parthenocissus tricuspidata, two different decorations of polystyrene honeycomb membrane (PSHCM) prepared by the breath figure approach were carried out with poly(N-(3-Sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine)(polySBMA) to explore controllable bioadhesive surfaces. Casting and dip-coating were employed to graft...
متن کاملBiomimetic materials and micropatterned structures using iniferters.
In the preparation of biomimetic materials it is often required that efficient methods of polymerization be used, often methods that can lead to biomimetic polymers with relatively narrow molecular weight distribution. Living radical polymerization techniques have successfully been used to create low polydispersity linear polymers by free-radical polymerizations. Although this technique slows d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta biomaterialia
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2012